
University Alexandru Ioan
Cuza

Doctoral Thesis

Improving Detection Of
Malicious Programs

Author:

Mihai - Razvan

Benchea

Supervisor:

Prof. Dr. Henri

Luchian

http://www.uaic.ro
http://www.uaic.ro
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com

Introduction

Starting with the year 2007 malware started to increase

exponentially. More malware was produced in 2007 than

in all years before that put together. The sudden growth

was mainly influenced by the idea that malware could be

used to earn money. Almost all possible ways of earning

money through malicious code were exploited. From the

most obvious ones, like stealing access to bank account

or asking for a ransom to give access to some encrypted

files, to less obvious ones like simulating user behavior for

certain websites in order to increase traffic and with it

money income for that web-site.

Trying to detect these samples has created an arm race be-

tween antivirus products and malware. As antiviruses and

operating systems are getting more and more complex and

include more technology in order to protect computers, the

malware adapts and brings new methods for evading de-

tection. These methods can be grouped in defensive mech-

anisms (packers, protectors: anti-debugging techniques,

polymorphism, server side polymorphism, metamorphism)

1

and offensive mechanisms (detect antivirus product, ter-

minate antivirus product, disable updates, disable firewall,

change dns settings, change permissions for files, avoid

writing to disk, install a rootkit).

A machine learning algorithm can be used to filter what

malware researchers analyze or it can even be used as a

primary detection method. However, this detection mech-

anism must also undergo some restrictions for it to be used

in practice.

1. The training speed must be fast enough to allow the

algorithm to finish in a decent amount of time when

run on very large datasets.

2. Testing speed is also very important. If we want the

method to be included in an antivirus product, it

must provide as little overhead as possible.

3. The model produced by the classification algorithm

must fit in a very small amount of memory.

4. No false positives, or as close to 0 as possible

2

Improving Malware Detection By

Feature Extraction

Malware detection through the use of machine learning is

not new; it has been used by other researchers and is cur-

rently used in many av-products. However, the results ob-

tained can be better either in terms of lower false positives

or by increasing the detection rate. The way I choose to

solve this problem is not by modifying the new algorithms,

but rather by extracting new features from existing ones

such that the accuracy of the original algorithm will in-

crease. I choose this method because I consider there is

an already good algorithm, named One Side Class Percep-

tron (OSCP) which was tested for malware detection with

low false positive rate and achieved good results.

The One Side Class Perceptron (OCSP) works by creating

a hyper-plane that is able to separate the two classes of

samples (malware and benign) such that no samples from

one class will be detected. It is very well suited for our

problem and by the way it is constructed it guarantees

that, on training phase, there will be no false positives.

3

Even though this algorithm solves the problem of false

positives, it also dramatically reduces the detection rate.

2.1 Feature Creationg Using Genetic

Programming

The dataset on which the algorithms will be tested con-

sists of 358.144 records of which 42.940 are malicious and

315.204 are benign. The proportion of malicious and be-

nign files is close to the one found in the wild. The files

from the dataset are all PE-files, mainly executable and

dll files, which were gathered over a period of two months

(april and may 2014). The files were statically and dy-

namically processed and a total of 300 boolean features

were extracted.

Mapping seems to provide good results. It increases the

detection rate while the number of false positive stay low

enough to permit the algorithm to be used in practical

applications. However, a big disadvantage of this method

is the number of features which it needs to create.

In the following paragraphs I will provide a method, based

on genetic programming, that will allow us to increase the

4

detection rate of the algorithm. To validate the results,

they will be compared to the ones obtained when training

with the best features obtained through mapping.In order

to not reduce diversity and have records belonging to a

different class but with the same set of features, the OSCP

algorithm will use 600 features instead of 300: the best 300

features after mapping plus the 300 original ones.

From the results obtained by comparing three boolean op-

eration used for mapping (XOR, AND, OR), the AND

operator achieves the best results: 65.35% detection rate,

15 false positives and 95.85% accuracy. For this reasons,

these will be used as a threshold to test the features ob-

tained through genetic programming.

We start by defining the chromosome. A chromosome is

a set of features (1 to 300) each one connected to other

through a boolean operator. Since the order in which the

expression is evaluated changes the result, a priority is also

given to each boolean operator. The structure can be seen

in Figure 2.1.

Notice that in Figure 2.1 each Fi, where i = 1, 300 refers

to one of the original features, each OPi refers to one of the

5

Figure 2.1: Chromosome

boolean operations {and,xor,or} and each Pi is a number

that reflects the priority of the boolean operation among

the expression. The chromosomes could have also been

implemented using binary trees; however I consider this

method to be more practical since it allows mutation on

every part of the chromosome (priority, operator and fea-

ture)

The first generation is constructed by generating 300 chro-

mosomes, of length 1. Each chromosome has one of the

original features, each operation is randomly chosen among

the set of boolean operators {and,or,xor} and each prior-

ity is initialized to 0.

The crossover operation is implemented in the following

way: 1000 new chromosomes are generated by randomly

selecting two parents and performing crossover on a ran-

domly selected point. The mutation operation can be per-

formed on any part of the chromosome. A probability of

6

mutation of 3% is considered. From the new generated

set of 1000 chromosomes, three sets of 30 chromosomes

are chosen. For the elements in the first set, a feature will

be randomly selected and negation will be performed. For

the elements in the second set, one of the operators will be

switched to a randomly chosen one from the boolean set

{and,or,xor}. Finally, for each chromosomes in the final

set, a priority will be chosen, and based on a randomly

generated number it will be incremented or decremented.

Based on the F-score, the best 300 chromosomes will be

selected. The parents are also included in the selection

process in order not to lose the best chromosomes found

so far. Doing so, a 71% in detection rate and 17 false

positives were obtained

To further improve the results, the current problem is ap-

proached as a multi modal optimization problem. A func-

tion is defined that gives a very low fitness score (nega-

tive) for the individuals that get activated more on the

clean records than on the malicious ones and for the oth-

ers will normalize the difference between the number of

7

malicious and clean records where the feature is being ac-

tivated based on how important is that feature for all the

malicious records. Using this function the detection rate

increases to 73.23% while the number of false positives in-

creases with just 2 units, reaching to 19 false positives.

The graphic in Fig 2.2 presents how the detection rate

modifies with each generation. The yellow line represents

the minimum number of features that are activated on ev-

ery record on each generation, while the vertical bars rep-

resent the standard deviation of the number of features

activated on every record on each generation.

(a) (b)

Figure 2.2: Evolution on each generation. Detection
Rate (a). Nr. of features activated on each record(b).

As it can be seen the detection rate increases as more

features are being set on the records with a low number

of activated features.

8

2.2 Feature Creation Using Restricted

Boltzmann Machine

The idea of creating features using a mathematical op-

erator can be extended. First of all, the mathematical

operator only brings a limited kind of relation between

features. Secondly, features could be created from the

combination of more than two initial features. In this way

the new created features may contain more information

and could prove more important in separating the records.

To address these ideas the mathematical operator should

be replaced with a function that has as arguments all the

existing features and the result of this function is a new

feature. Since the newly created features will be used as

input for a linear classifier it is important that the function

used to create them should be a non-linear one. Finding

a function that is optimized for this task may seem difi-

cult, however these restrictions are very similar to the ones

imposed by a restricted Boltzmann machine.

A restricted Boltzmann machine is a stochastic neural net-

work composed of two layers: one made up of visible units

(the data) and another one made up of hidden units (the

9

new created features). Every unit from one hidden layer

has a symmetrical connection with every unit from the vis-

ible layer, however there are no connection between units

from the same layer. Each neuron from the network has

a binary state: 0 or 1. Figure 2.3 is an example of re-

stricted Boltzmann machine composed of 4 visible units

and 3 hidden units and their corresponding biases.

Figure 2.3: A Restricted Boltzmann Machine

The value of each unit is generated according to a proba-

bility function computed in regards to the elements from

the other layer and the weighs of the connections.

The idea of using a restricted Boltzmann machine and a

linear classifier (one side perceptron in this case) is de-

picted in Figure 2.4. As it can be seen in the figure, the

hidden layer will be the new set of features that the per-

ceptron will be trained on.

10

Figure 2.4: Restricted Boltzmann machine and Lin-
ear Classifier

Besides creating features in a non linear way, this ensem-

ble also has another advantage. Since the restricted Boltz-

mann machine is a stochastic neural network it means that

the units are based on probabilities. After the network has

been trained, instead of sampling a binary value for a hid-

den unit, the probability can be used instead. This means

that a continuous value will be used instead of a binary

one, thus giving more information to the linear classifier.

Training of this ensemble has to be done in two steps:

First train the RBM in an unsupervised manner and then

train the OSCP classifier using the features outputted by

11

the RBM.

In order to test how this ensemble performs, a collection

of malicious and benign samples was gathered during the

months of January and February 2014, containing 3087200

files. This was further processed and only the best 300 fea-

tures were kept. The results are compared with the OSCP

algorithm and its mapped version (OSCP-MAP). The re-

sults are displayed in Table 2.1 As it can bee seen, the

Algorithm Detection False Positive Accuracy

OSCP 73.11% 20 (0.00162%) 99.32 %
OSCP-RBM 88.83% 3 (0.00024%) 99.72 %
OSCP-MAP 90.18% 87(0.00707%) 99.72 %

Table 2.1: The results of the 3-fold cross-validation
for OSCP, OSCP-MAP, OSCP-RBM algorithms

ensemble (noted with OSCP-RBM in Table 2.1) achieved

an increase in detection of 15.72 % compared to the one

side class perceptron (OSCP). There is also a decrease in

the number of false positives, the ensemble obtaining 6

times less false alarms than the OSCP algorithm. How-

ever, when comparing the ensemble to the mapped version

of the perceptron the detection rate is smaller with 1.35 %.

12

I consider the small decrease of the detection rate is well

compensated by the big difference in the number of false

positives obtained by the two algorithms, the OSCP-MAP

obtaining 29 times more false positives.

Clustering and Classification of Script

based Malware

In contrast to standard documents, where the only ac-

tions available are reading and modifying it, there also

exists documents that can interact with the user or as-

sist him by doing some automatic actions. This kind of

interaction can be very complex and could include send-

ing automatic e-mail, auto-completion of some fields de-

pending of what choices have been previously selected or

just automatic parsing of the answers a users may have

given to a form. Since the possibilities are unlimited, the

only way to implement this kind of feature is to add code

to the document that is responsible for the user interac-

tion and add support for the programming language to

the software that renders the documents. Some examples

of this is the use of JavaScript language for the portable

document format (pdf) in the Adobe Reader software, or

13

the use of Javascript for HTML pages. This feature also

opened the door for malware creators that can make use

of the programming language feature to execute their ma-

licious code. Most of the code is obfuscated in order to

avoid detection.

3.1 Clustering Document Based Malware

Clustering is very important in malware industry since it

reduces the work a malware analyst needs to do. Also, by

having many similar files grouped together, generic signa-

tures can be added which in turn, increases productivity

and proactivity.

Two methods for clustering are provided: Hierarchical

bootom-up clustering (based the distance between every

two items) and Hash-Based clustering (based on comput-

ing a hash function over every item and clustering together

the files for which the function outputs the same value)

3.1.1 Hierarchical Bottom-up Clustering

In order to compute the distance between every malicious

document, the files need to be mapped to a coordinate

system. To do this, the file needs to be processed, features

14

extracted and stored in an abstract manner. The obtained

result will be called PDF fingerprint. In order to create

the PDF fingerprint, the following steps must be carried

on:

1. Extract the JavaScript code from the PDF file.

2. Tokenize the JavaScript files obtained, by using the

grammar from the ECMA scripts [?] and for every

token extract as tuple its value and its class.

3. Remove unnecessary tokens

4. Emulate simple string operations

5. For each class, count how many times it appears and

generate a new set of tuples, that consists of the id

of the class and its frequency. The PDF Fingerprint

will be the set of tuples generated on this step.

Having the PDF Fingerprint as an abstract representation

for the file, it will be used to map the file to a Cartesian

coordinate system. For each available token class there

will be a coordinate axis, and the frequency present in tu-

ple will serve as the coordinate on that axis. By doing so

for every PDF fingerprint, similar files will end up close

15

to each other. A metric is proposed that is based on the

Manhattan distance, but changing the subtraction with

the division. Secondly, the percentage of similarity be-

tween two files is established only using information from

the two fingerprints.

d(p, q) =

∑K
i Dist(i)

|K|
∗ 100 (3.1)

Dist(i) =
min(tuplepi.frequency, tupleqi.frequency)

max(tuplepi.frequency, tupleqi.frequency)
(3.2)

Dist(i) = 0, if (i ∈ Pc, i /∈ Qc) or (i /∈ Pc, i ∈ Qc)

(3.3)

In order to see what kind of clusters could be obtained

using this metric, the value of the threshold was set to

80%. The number of clusters obtained is 11, close enough

to the number of malware families (12).

Even though this method provides reliable results, its time

complexity makes it difficult to use when it comes to large

datasets.

16

3.1.2 Hash Based Clustering

The hash based clustering method tries to address the

main problem of the Hierarchical Bottom-up Clustering

method, its O(n2) time complexity. It does this by pro-

cessing each file only once and applying a hash function

(MD5 or SHA256) and clustering together files with the

same hash. The algorithm starts with the PDF finger-

print previously described when the Hierarchical Bottom-

up Clustering method was introduced. The steps are de-

scribed bellow:

1. Sort the tuples according to the frequency member.

In case of two tuples that have the same frequency,

the one which has a higher class-id will come first.

2. Normalize tuples frequency: This means that the

frequency member of every tuple will be divided by

a factor.

3. Apply a Hash Function:(ie. MD5, SHA256)

For testing both of the clustering methods, a larger database

was constructed consisting of 2311035 PDF-files. This

dataset consists of 1333420 benign files gathered from the

17

different sources for a period of 12 months and 977615

files gathered from honeypots, spam messages and public

sources.

The first comparison between the two clustering meth-

ods (Hierarchical Bottom-up Clustering and Hash-Based

Clustering) is related to their speed in order too see which

one can be used in practical situations. For this reason,

a subset of 10000 files from the original dataset was cre-

ated. The Hash Table clustering finished in 1 second, while

the hierarchical bottom-up clustering finished in 1 day 21

hours and 33 minutes. The results clearly state that the

Hash Based Clustering method is much time faster than

the Hierarchical Bottom-up Clustering.

Going from hash-based clustering method to a way of

providing detection for document based malware is very

straight forward. The hash outputted by the clustering

method will be used as a detection marker.

3.1.3 Classification Of Script Based Malware

In order to achieve good classification results, the scripts

will undergo several transformations in order to eliminate

18

as much as possible from the obfuscation techniques. Fol-

lowing this, two classification methods will be used, one

relying on the One Side Class Perceptron and the other

on Hidden Markov Models.

In order to create the dataset that is suitable for training

and testing the algorithms, several steps were taken. First,

in order to find benign script samples, the top 1 million

websites from Alexa ranking were visited and scripts that

were used in their index page were extracted. The mali-

cious samples were collected during a period of one year

from different sources. In doing so, a dataset that con-

tains 1296962 benign samples and 25357 malicious scripts

was created. The ratio between malicious and clean files

is similar to the one we would find in the wild.

The first approach for classifying JavaScript files was to

use the One Side Class Perceptron (OSCP) algorithm.

Two variations were tested. The first one (OSCP-simple)

uses boolean features (the presence of a javascript token)

and achieved only 57.5% detection rate). The second one

(OSCP-frequency), that uses the frequency of the tokens

in each script achieved 65.59% detection rate.

19

Finally, a hybrid approach is used. The records are first

split using a binary decision tree. For each of the resulted

cluster, an OSCP algorithm is used in order to classify the

samples. This method will be called BT-OSCP-xxx where

xxx defines the depth of the decision tree.The method of

grouping the samples is straight forward. It chooses a

feature that best separates the dataset and puts all the

elements containing the feature in one branch of the tree

and the rest in the other branch. Choosing the feature

is done according to a score function which promotes the

feature that is present in a number of records close to the

half of the dataset size.

The final approach was to use a Hidden Markov Model

(HMM). In order to train it, several notations must first

be established. Since, HMM works with observation and

states, the tokens from each tokenized JavaScript file will

be considered as a list of observations and the states in

which each file can be malicious or clean: S = Sclean, Sinfected

where Sclean defines the state in which the file performs a

genuine action while Sinfected represent the state where a

malicious action is being performed.

20

To train the model, two HMM were constructed: one for

malicious files(Mclean) and one for infected files (Minfected).

Each time a script must be classified it is first compared

to each of the models and it will be assigned to the group

that resembles the most:

• P (X|Mclean) =
∑
Z

P (X|Z,Mclean)P (Z|Mclean) - the

probability that the observation sequence was gen-

erated by Mclean

• P (X|Minfected) =
∑
Z

P (X|Z,Minfected)P (Z|Minfected)

- the probability that the observation sequence was

generated by Minfected

• S(X) = max(P (X|Mclean), P (X|Minfected))

The training of each HMM was done using the Baum-

Welch algorithm which is based on the forward-backward

algorithm and works in an unsupervised manner.

For the BT-OSCP-xxx two configurations were used, one

where the depth of the decision tree was set to 4, BT-

OSCP-4, thus 16 clusters resulted and one where the depth

was set to 5, BT-OSCP-5, thus 32 clusters resulted. The

results can be seen in Table 3.1.

21

Algorithm Detection Rate False Positive rate
OSCP 57.51% 0.02%
OSCP-frequency 65.59% 0.01%
BT-OSCP-4 81.65% 0.22%
BT-OSCP-5 89.75% 0.31%
HMM 76.23% 2.29%

Table 3.1: 3-fold cross validation results for OSCP,
OSCP-frequency BT-OSCP-xxx and HMM

The BT-OSCP-5 provides the best detection rate but with

a higher rate of false positives. It also takes more time to

train due to the need of building the decision tree and

training of 32 OSCP algorithms. As for the HMM, its

detection rate is in the middle and has the highest number

of false positives. It also took the most time to train.

Mobile Privacy Issues

Due to security restrictions imposed by mobile operating

systems, malware almost disapeared from official applica-

tion markets. However, this doesn’t mean a user is risk

free when using his smartphone. Nowadays, most of the

smartphones include many sensors and features (GPS lo-

cation) and are created with the scope of easing ones life.

22

However, this also may come with privacy risks. For ex-

ample, the GPS, can be used by an application to get the

user location that will be further used in delivering tar-

geted ads. Even if the GPS is turned off, the device could

be geolocated by its ip address.

The risk that a user downloads such an application are

higher when advertising SDKs are also being taken into

consideration. In order to make a profit from their ap-

plication but still make it available for everyone, many

programmers use advertising SDKs. These are bundled

in the application and at different moments when the ap-

plication is being run, they contact a server in order to

display some marketing ads to the user. However, these

sdks come with their set of permissions and they usually

collect information that the programmer nor the user is

aware of.

Since more than 80% of the applications from the Google

Play and more than two thirds of the applications in Ap-

ple store are free, the ad-monetization method is domi-

nant. Many of the advertising frameworks collect private

information from the user and send them to their servers.

23

Adware specific behavior Percent of Apps

Sends location 9.80%
Sends the e-mail address 5.73%

Sends the device ID 14.58%
Sends the phone number 8.82%

Generate spam in notification bar 8.48 %
Greates spam icons on home screen 9.17 %

Table 4.1: Actions Performed by TOP5 3rd Party
SDKs

There are even situations where the private data is be-

ing sent unencrypted, thus an attacker could intercept the

traffic. There are even sdks that allow receiving and exe-

cution of JavaScript code from an external server without

verifying the server’s identity. This allows an attacker to

execute code on the device.

In order to highlight the data that is most often being

sent by third party sdks, 314.000 application from Google

Play were collected and the top 5 third party advertising

frameworks were analyzed. The results can be seen in

Table 4.1

24

Since the number of application on Google Play and Ap-

ple Store increased by more than 200.000 only in 2014,

the only way to analyze their privacy risks is to use an

automatic system.

In order to give a verdict for an applications, two stages

are needed. In the first one, the features are extracted and

stored in a parsable format while in the second one the

features will be processed and a verdict will be given. The

two stages must be performed separately since verdicts can

change from time to time as heuristics are added while

the extraction phase changes rarely. Feature extraction

is also done in two steps: First there is a static method

that parses the code and all meta information contained in

the file and then there is a dynamic method that tries to

execute the file and collect behavior features. As execution

take time, it is easy to understand why feature extraction

needs to be separated.

The static extraction method parses the Android executable

file (Dalvik Executable), the iOS executable code found in

application packages (IPA) and as well as other files that

can be found in the application container (i.e. Manifest

25

File for the Android and the info.plist for the iOS). Fea-

tures that may be extracted are URL, Classes, Method

Names, service names, strings, etc. Using this informa-

tion, it is easy to detect if the application uses a known

adware sdk.

The Dynamic extraction method is the best solution against

obfuscation methods. This involves running the applica-

tion in a controlled environment and observing its behav-

ior as well as the data transmitted over the network. Using

Cycript for the iOS platform and Robotium for the An-

droid OS, real user scenarios are simulated.

After analysing over 310,000 applications from Google Pay,

the following privacy issues were discovered: 1.13% of the

application send the precise location of the device (GPS

coordinated), 0.64% send the e-mail address and 12.66%

send the device ID, using an unencrypted connection. Be-

sides that, 0.51% of the applications send the username

and password required in login or registration forms in

plain text.

A simillar study was carried on 207,000 application from

the Apple Market. 14.43% send the device ID and 0.56%

26

send the credentials required in login or registration forms

in plain text.

Conclusion and Future Work

This paper analyzed three main problems and solutions re-

garding security and privacy that people using computers

or mobile devices are currently facing.

The first one, which is the oldest, refers to detection of

malicious executables that run on the Windows operating

system. Here, the accuracy obtained by using the OSCP

algorithm was improved by extracting new features from

the original ones through the use of a neural network (Re-

stricted Boltzmann Machine) or through the use of Ge-

netic Programming.

The second problem addressed, which is mainly used in

targeted attacks, is detection of scripts found in document

files. To achieve a good detection rate a Hidden Markov

Model was tested as well as hybrid method consisting of

a decision tree and the OSCP algorithm.

The final problem presented in this paper is also the newest

one present among users. It reefers to the privacy of the

27

user’s personal data that is used by applications in mo-

bile devices. An analysis of privacy risks associated with

each well known application market was done. The cur-

rent work also focused on how a framework can be created

that is able to analyze these applications both statically

and dynamically and provides feedback to the users re-

garding to the danger they are exposing themselves.

Since using these methods good practical results were achieved,

in the near future more attention will be attributed to im-

proving them. Mainly, I am interested on how features

can be created using many stacked hidden layers in a neu-

ral network and how genetically evolved features can be

created using non-linear functions.

28

	1 Introduction
	2 Improving Malware Detection By Feature Extraction
	2.1 Feature Creationg Using Genetic Programming
	2.2 Feature Creation Using Restricted Boltzmann Machine

	3 Clustering and Classification of Script based Malware
	3.1 Clustering Document Based Malware
	3.1.1 Hierarchical Bottom-up Clustering
	3.1.2 Hash Based Clustering
	3.1.3 Classification Of Script Based Malware

	4 Mobile Privacy Issues
	5 Conclusion and Future Work

